Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
bioRxiv ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38617224

RESUMO

Substance use, including cigarettes and cannabis, is associated with poorer sustained attention in late adolescence and early adulthood. Previous studies were predominantly cross-sectional or under-powered and could not indicate if impairment in sustained attention was a consequence of substance-use or a marker of the inclination to engage in such behaviour. This study explored the relationship between sustained attention and substance use across a longitudinal span from ages 14 to 23 in over 1,000 participants. Behaviours and brain connectivity associated with diminished sustained attention at age 14 predicted subsequent increases in cannabis and cigarette smoking, establishing sustained attention as a robust biomarker for vulnerability to substance use. Individual differences in network strength relevant to sustained attention were preserved across developmental stages and sustained attention networks generalized to participants in an external dataset. In summary, brain networks of sustained attention are robust, consistent, and able to predict aspects of later substance use.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38532040

RESUMO

RATIONALE: For decades, cannabis has been the most widely used illicit substance in the world, particularly among youth. Research suggests that mental health problems associated with cannabis use may result from its effect on reward brain circuit, emotional processes, and cognition. However, findings are mostly derived from correlational studies and inconsistent, particularly in adolescents. OBJECTIVES AND METHODS: Using data from the IMAGEN study, participants (non-users, persistent users, abstinent users) were classified according to their cannabis use at 19 and 22 years-old. All participants were cannabis-naïve at baseline (14 years-old). Psychopathological symptoms, cognitive performance, and brain activity while performing a Monetary Incentive Delay task were used as predictors of substance use and to analyze group differences over time. RESULTS: Higher scores on conduct problems and lower on peer problems at 14 years-old (n = 318) predicted a greater likelihood of transitioning to cannabis use within 5 years. At 19 years of age, individuals who consistently engaged in low-frequency (i.e., light) cannabis use (n = 57) exhibited greater conduct problems and hyperactivity/inattention symptoms compared to non-users (n = 52) but did not differ in emotional symptoms, cognitive functioning, or brain activity during the MID task. At 22 years, those who used cannabis at both 19 and 22 years-old n = 17), but not individuals that had been abstinent for ≥ 1 month (n = 19), reported higher conduct problems than non-users (n = 17). CONCLUSIONS: Impairments in reward-related brain activity and cognitive functioning do not appear to precede or succeed cannabis use (i.e., weekly, or monthly use). Cannabis-naïve adolescents with conduct problems and more socially engaged with their peers may be at a greater risk for lighter yet persistent cannabis use in the future.

3.
Cereb Circ Cogn Behav ; 6: 100212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38445293

RESUMO

Background: Impaired recovery of blood pressure (BP) in response to standing up is a prevalent condition in older individuals. We evaluated the relationship between the early recovery of hemodynamic responses to standing and brain health in adults over 50. Methods: Participants from The Irish Longitudinal Study on Ageing (TILDA) (n=411; age 67.6 ± 7.3 years; 53.4 % women) performed an active stand challenge while blood pressure and heart rate were continuously monitored. The recovery of these parameters was determined as the slope of the BP and HR response, following the initial drop/rise after standing. We have previously reported a novel and validated measure of brain ageing using MRI data, which measures the difference between biological brain age and chronological age, providing a brain-predicted age difference (brainPAD) score. Results: Slower recovery of systolic and diastolic BP was found to be significantly associated with higher brainPAD scores (i.e., biologically older brains), where a one-year increase in brainPAD was associated with a decrease of 0.02 mmHg/s and 0.01 mmHg/s in systolic and diastolic BP recovery, respectively, after standing. Heart rate (HR) recovery was not significantly associated with brainPAD score. Conclusion: These results demonstrate that slower systolic and diastolic BP recovery in the early phase after standing is associated with accelerated brain aging in older individuals. This suggests that the BP response to standing, measured using beat-to-beat monitoring, has the potential to be used as a marker of accelerated brain aging, relying on a simple procedure and devices that are easily accessible.

4.
Alzheimers Dement ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501336

RESUMO

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.

5.
iScience ; 27(2): 108954, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322983

RESUMO

During late adolescence, the brain undergoes ontogenic organization altering subcortical-cortical circuitry. This includes regions implicated in pain chronicity, and thus alterations in the adolescent ontogenic organization could predispose to pain chronicity in adulthood - however, evidence is lacking. Using resting-state functional magnetic resonance imaging from a large European longitudinal adolescent cohort and an adult cohort with and without chronic pain, we examined links between painful symptoms and brain connectivity. During late adolescence, thalamo-, caudate-, and red nucleus-cortical connectivity were positively and subthalamo-cortical connectivity negatively associated with painful symptoms. Thalamo-cortical connectivity, but also subthalamo-cortical connectivity, was increased in adults with chronic pain compared to healthy controls. Our results indicate a shared basis in basothalamo-cortical circuitries between adolescent painful symptomatology and adult pain chronicity, with the subthalamic pathway being differentially involved, potentially due to a hyperconnected thalamo-cortical pathway in chronic pain and ontogeny-driven organization. This can inform neuromodulation-based prevention and early intervention.

6.
IBRO Neurosci Rep ; 16: 201-210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348392

RESUMO

Adolescence is a crucial period for physical and psychological development. The impact of negative life events represents a risk factor for the onset of neuropsychiatric disorders. This study aims to investigate the relationship between negative life events and structural brain connectivity, considering both graph theory and connectivity strength. A group (n = 487) of adolescents from the IMAGEN Consortium was divided into Low and High Stress groups. Brain networks were extracted at an individual level, based on morphological similarity between grey matter regions with regions defined using an atlas-based region of interest (ROI) approach. Between-group comparisons were performed with global and local graph theory measures in a range of sparsity levels. The analysis was also performed in a larger sample of adolescents (n = 976) to examine linear correlations between stress level and network measures. Connectivity strength differences were investigated with network-based statistics. Negative life events were not found to be a factor influencing global network measures at any sparsity level. At local network level, between-group differences were found in centrality measures of the left somato-motor network (a decrease of betweenness centrality was seen at sparsity 5%), of the bilateral central visual and the left dorsal attention network (increase of degree at sparsity 10% at sparsity 30% respectively). Network-based statistics analysis showed an increase in connectivity strength in the High stress group in edges connecting the dorsal attention, limbic and salience networks. This study suggests negative life events alone do not alter structural connectivity globally, but they are associated to connectivity properties in areas involved in emotion and attention.

7.
Crohns Colitis 360 ; 6(1): otae003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38352118

RESUMO

Background: Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim: We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods: We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results: Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions: Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.

8.
Res Sq ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352452

RESUMO

This study uses machine learning models to uncover diagnostic and risk prediction markers for eating disorders (EDs), major depressive disorder (MDD), and alcohol use disorder (AUD). Utilizing case-control samples (ages 18-25 years) and a longitudinal population-based sample (n=1,851), the models, incorporating diverse data domains, achieved high accuracy in classifying EDs, MDD, and AUD from healthy controls. The area under the receiver operating characteristic curves (AUC-ROC [95% CI]) reached 0.92 [0.86-0.97] for AN and 0.91 [0.85-0.96] for BN, without relying on body mass index as a predictor. The classification accuracies for MDD (0.91 [0.88-0.94]) and AUD (0.80 [0.74-0.85]) were also high. Each data domain emerged as accurate classifiers individually, with personality distinguishing AN, BN, and their controls with AUC-ROCs ranging from 0.77 to 0.89. The models demonstrated high transdiagnostic potential, as those trained for EDs were also accurate in classifying AUD and MDD from healthy controls, and vice versa (AUC-ROCs, 0.75-0.93). Shared predictors, such as neuroticism, hopelessness, and symptoms of attention-deficit/hyperactivity disorder, were identified as reliable classifiers. For risk prediction in the longitudinal population sample, the models exhibited moderate performance (AUC-ROCs, 0.64-0.71), highlighting the potential of combining multi-domain data for precise diagnostic and risk prediction applications in psychiatry.

9.
Hum Brain Mapp ; 45(3): e26574, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401132

RESUMO

Adolescent subcortical structural brain development might underlie psychopathological symptoms, which often emerge in adolescence. At the same time, sex differences exist in psychopathology, which might be mirrored in underlying sex differences in structural development. However, previous studies showed inconsistencies in subcortical trajectories and potential sex differences. Therefore, we aimed to investigate the subcortical structural trajectories and their sex differences across adolescence using for the first time a single cohort design, the same quality control procedure, software, and a general additive mixed modeling approach. We investigated two large European sites from ages 14 to 24 with 503 participants and 1408 total scans from France and Germany as part of the IMAGEN project including four waves of data acquisition. We found significantly larger volumes in males versus females in both sites and across all seven subcortical regions. Sex differences in age-related trajectories were observed across all regions in both sites. Our findings provide further evidence of sex differences in longitudinal adolescent brain development of subcortical regions and thus might eventually support the relationship of underlying brain development and different adolescent psychopathology in boys and girls.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Masculino , Adolescente , Feminino , Adulto Jovem , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Desenvolvimento do Adolescente , Caracteres Sexuais
10.
Biol Psychiatry Glob Open Sci ; 4(1): 385-393, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38298776

RESUMO

Background: During childhood and adolescence, attention-deficit/hyperactivity disorder (ADHD) is associated with changes in symptoms and brain structures, but the link between brain structure and function remains unclear. The limbic system, often termed the "emotional network," plays an important role in a number of neurodevelopmental disorders, yet this brain network remains largely unexplored in ADHD. Investigating the developmental trajectories of key limbic system structures during childhood and adolescence will provide novel insights into the neurobiological underpinnings of ADHD. Methods: Structural magnetic resonance imaging data (380 scans), emotional regulation (Affective Reactivity Index), and ADHD symptom severity (Conners 3 ADHD Index) were measured at up to 3 time points between 9 and 14 years of age in a sample of children and adolescents with ADHD (n = 57) and control children (n = 109). Results: Compared with the control group, the ADHD group had lower volume of the amygdala (left: ß standardized [ß_std] = -0.38; right: ß_std = -0.34), hippocampus (left: ß_std = -0.44; right: ß_std = -0.34), cingulate gyrus (left: ß_std = -0.42; right: ß_std = -0.32), and orbitofrontal cortex (right: ß_std = -0.33) across development (9-14 years). There were no significant group-by-age interactions in any of the limbic system structures. Exploratory analysis found a significant Conners 3 ADHD Index-by-age interaction effect on the volume of the left mammillary body (ß_std = 0.17) in the ADHD group across the 3 study time points. Conclusions: Children and adolescents with ADHD displayed lower volume and atypical development in limbic system structures. Furthermore, atypical limbic system development was associated with increased symptom severity, highlighting a potential neurobiological correlate of ADHD severity.

11.
Brain Res ; 1830: 148812, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369085

RESUMO

The field of blood-based biomarkers for Alzheimer's disease (AD) has advanced at an incredible pace, especially after the development of sensitive analytic platforms that can facilitate large-scale screening. Such screening will be important when more sophisticated diagnostic methods are scarce and expensive. Thus, blood-based biomarkers can potentially reduce diagnosis inequities among populations from different socioeconomic contexts. This large-scale screening can be performed so that older adults at risk of cognitive decline assessed using these methods can then undergo more complete assessments with classic biomarkers, increasing diagnosis efficiency and reducing costs to the health systems. Blood-based biomarkers can also aid in assessing the effect of new disease-modifying treatments. This paper reviews recent advances in the area, focusing on the following leading candidates for blood-based biomarkers: amyloid-beta (Aß), phosphorylated tau isoforms (p-tau), neurofilament light (NfL), and glial fibrillary acidic (GFAP) proteins, as well as on new candidates, Neuron-Derived Exosomes contents (NDEs) and Transactive response DNA-binding protein-43 (TDP-43), based on data from longitudinal observational cohort studies. The underlying challenges of validating and incorporating these biomarkers into routine clinical practice and primary care settings are also discussed. Importantly, challenges related to the underrepresentation of ethnic minorities and socioeconomically disadvantaged persons must be considered. If these challenges are overcome, a new time of cost-effective blood-based biomarkers for AD could represent the future of clinical procedures in the field and, together with continued prevention strategies, the beginning of an era with a lower incidence of dementia worldwide.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Biomarcadores , Proteínas tau
12.
medRxiv ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260410

RESUMO

Structural brain aging has demonstrated strong inter-individual heterogeneity and mirroring patterns with brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, most of the existing research focused on the cross-sectional changes of brain aging. In this investigation, we present a data-driven approach that incorporate both cross-sectional changes and longitudinal trajectories of structural brain aging and identified two brain aging patterns among 37,013 healthy participants from UK Biobank. Participants with accelerated brain aging also demonstrated accelerated biological aging, cognitive decline and increased genetic susceptibilities to major neuropsychiatric disorders. Further, by integrating longitudinal neuroimaging studies from a multi-center adolescent cohort, we validated the "last in, first out" mirroring hypothesis and identified brain regions with manifested mirroring patterns between brain aging and brain development. Genomic analyses revealed risk loci and genes contributing to accelerated brain aging and delayed brain development, providing molecular basis for elucidating the biological mechanisms underlying brain aging and related disorders.

13.
Nat Hum Behav ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182882

RESUMO

Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.

14.
Nat Hum Behav ; 8(1): 164-180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37857874

RESUMO

The cerebral ventricles are recognized as windows into brain development and disease, yet their genetic architectures, underlying neural mechanisms and utility in maintaining brain health remain elusive. Here we aggregated genetic and neuroimaging data from 61,974 participants (age range, 9 to 98 years) in five cohorts to elucidate the genetic basis of ventricular morphology and examined their overlap with neuropsychiatric traits. Genome-wide association analysis in a discovery sample of 31,880 individuals identified 62 unique loci and 785 candidate genes associated with ventricular morphology. We replicated over 80% of loci in a well-matched cohort of lateral ventricular volume. Gene set analysis revealed enrichment of ventricular-trait-associated genes in biological processes and disease pathogenesis during both early brain development and degeneration. We explored the age-dependent genetic associations in cohorts of different age groups to investigate the possible roles of ventricular-trait-associated loci in neurodevelopmental and neurodegenerative processes. We describe the genetic overlap between ventricular and neuropsychiatric traits through comprehensive integrative approaches under correlative and causal assumptions. We propose the volume of the inferior lateral ventricles as a heritable endophenotype to predict the risk of Alzheimer's disease, which might be a consequence of prodromal Alzheimer's disease. Our study provides an advance in understanding the genetics of the cerebral ventricles and demonstrates the potential utility of ventricular measurements in tracking brain disorders and maintaining brain health across the lifespan.


Assuntos
Doença de Alzheimer , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Estudo de Associação Genômica Ampla , Fenótipo , Ventrículos Cerebrais/diagnóstico por imagem , Ventrículos Cerebrais/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
15.
Brain Struct Funct ; 229(1): 15-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37819410

RESUMO

A growing number of evidence supports a continued distribution of autistic traits in the general population. However, brain maturation trajectories of autistic traits as well as the influence of sex on these trajectories remain largely unknown. We investigated the association of autistic traits in the general population, with longitudinal gray matter (GM) maturation trajectories during the critical period of adolescence. We assessed 709 community-based adolescents (54.7% women) at age 14 and 22. After testing the effect of sex, we used whole-brain voxel-based morphometry to measure longitudinal GM volumes changes associated with autistic traits measured by the Social Responsiveness Scale (SRS) total and sub-scores. In women, we observed that the SRS was associated with slower GM volume decrease globally and in the left parahippocampus and middle temporal gyrus. The social communication sub-score correlated with slower GM volume decrease in the left parahippocampal, superior temporal gyrus, and pallidum; and the social cognition sub-score correlated with slower GM volume decrease in the left middle temporal gyrus, the right ventromedial prefrontal and orbitofrontal cortex. No longitudinal association was found in men. Autistic traits in young women were found to be associated with specific brain trajectories in regions of the social brain and the reward circuit known to be involved in Autism Spectrum Disorder. These findings support both the hypothesis of an earlier GM maturation associated with autistic traits in adolescence and of protective mechanisms in women. They advocate for further studies on brain trajectories associated with autistic traits in women.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Masculino , Humanos , Adolescente , Feminino , Adulto , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
16.
medRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045393

RESUMO

Background: Depressive symptoms are highly prevalent, present in heterogeneous symptom patterns, and share diverse neurobiological underpinnings. Understanding the links between psychopathological symptoms and biological factors is critical in elucidating its etiology and persistence. We aimed to evaluate the utility of using symptom-brain networks to parse the heterogeneity of depressive symptomatology in a large adolescent sample. Methods: We used data from the third wave of the IMAGEN study, a multi-center panel cohort study involving 1,317 adolescents (52.49% female, mean±SD age=18.5±0.72). Two network models were estimated: one including an overall depressive symptom severity sum score based on the Adolescent Depression Rating Scale (ADRS), and one incorporating individual ADRS symptom/item scores. Both networks included measures of cortical thickness in several regions (insula, cingulate, mOFC, fusiform gyrus) and hippocampal volume derived from neuroimaging. Results: The network based on individual symptom scores revealed associations between cortical thickness measures and specific symptoms, obscured when using an aggregate depression severity score. Notably, the insula's cortical thickness showed negative associations with cognitive dysfunction (partial cor.=-0.15); the cingulate's cortical thickness showed negative associations with feelings of worthlessness (partial cor. = -0.10), and mOFC was negatively associated with anhedonia (partial cor. = -0.05). Limitations: This cross-sectional study included participants who were relatively healthy and relied on the self-reported assessment of depression symptoms. Conclusions: This study showcases the utility of network models in parsing heterogeneity in depressive symptoms, linking individual symptoms to specific neural substrates. We outline the next steps to integrate neurobiological and cognitive markers to unravel MDD's phenotypic heterogeneity.

17.
BJPsych Open ; 9(6): e217, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981567

RESUMO

BACKGROUND: Identifying youths most at risk to COVID-19-related mental illness is essential for the development of effective targeted interventions. AIMS: To compare trajectories of mental health throughout the pandemic in youth with and without prior mental illness and identify those most at risk of COVID-19-related mental illness. METHOD: Data were collected from individuals aged 18-26 years (N = 669) from two existing cohorts: IMAGEN, a population-based cohort; and ESTRA/STRATIFY, clinical cohorts of individuals with pre-existing diagnoses of mental disorders. Repeated COVID-19 surveys and standardised mental health assessments were used to compare trajectories of mental health symptoms from before the pandemic through to the second lockdown. RESULTS: Mental health trajectories differed significantly between cohorts. In the population cohort, depression and eating disorder symptoms increased by 33.9% (95% CI 31.78-36.57) and 15.6% (95% CI 15.39-15.68) during the pandemic, respectively. By contrast, these remained high over time in the clinical cohort. Conversely, trajectories of alcohol misuse were similar in both cohorts, decreasing continuously (a 15.2% decrease) during the pandemic. Pre-pandemic symptom severity predicted the observed mental health trajectories in the population cohort. Surprisingly, being relatively healthy predicted increases in depression and eating disorder symptoms and in body mass index. By contrast, those initially at higher risk for depression or eating disorders reported a lasting decrease. CONCLUSIONS: Healthier young people may be at greater risk of developing depressive or eating disorder symptoms during the COVID-19 pandemic. Targeted mental health interventions considering prior diagnostic risk may be warranted to help young people cope with the challenges of psychosocial stress and reduce the associated healthcare burden.

18.
medRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014064

RESUMO

Introduction: Little is understood about the dynamic interplay between brain morphology and cognitive ability across the life course. Additionally, most existing research has focused on global morphology measures such as estimated total intracranial volume, mean thickness, and total surface area. Methods: Mendelian randomization was used to estimate the bidirectional effects between cognitive ability, global and regional measures of cortical thickness and surface area, estimated total intracranial volume, total white matter, and the volume of subcortical structures (N=37,864). Analyses were stratified for developmental periods (childhood, early adulthood, mid-to-late adulthood; age range: 8-81 years). Results: The earliest effects were observed in childhood and early adulthood in the frontoparietal lobes. A bidirectional relationship was identified between higher cognitive ability, larger estimated total intracranial volume (childhood, mid-to-late adulthood) and total surface area (all life stages). A thicker posterior cingulate cortex and a larger surface area in the caudal middle frontal cortex and temporal pole were associated with greater cognitive ability. Contrary, a thicker temporal pole was associated with lower cognitive ability. Discussion: Stable effects of cognitive ability on brain morphology across the life course suggests that childhood is potentially an important window for intervention.

19.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831741

RESUMO

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Assuntos
Mapeamento Encefálico , Afinamento Cortical Cerebral , Adolescente , Humanos , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Lateralidade Funcional/fisiologia , Receptores de Neurotransmissores , Encéfalo/fisiologia
20.
medRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790416

RESUMO

Adolescents exhibit remarkable heterogeneity in the structural architecture of brain development. However, due to the lack of large-scale longitudinal neuroimaging studies, existing research has largely focused on population averages and the neurobiological basis underlying individual heterogeneity remains poorly understood. Using structural magnetic resonance imaging from the IMAGEN cohort (n=1,543), we show that adolescents can be clustered into three groups defined by distinct developmental patterns of whole-brain gray matter volume (GMV). Genetic and epigenetic determinants of group clustering and long-term impacts of neurodevelopment in mid-to-late adulthood were investigated using data from the ABCD, IMAGEN and UK Biobank cohorts. Group 1, characterized by continuously decreasing GMV, showed generally the best neurocognitive performances during adolescence. Compared to Group 1, Group 2 exhibited a slower rate of GMV decrease and worsened neurocognitive development, which was associated with epigenetic changes and greater environmental burden. Further, Group 3 showed increasing GMV and delayed neurocognitive development during adolescence due to a genetic variation, while these disadvantages were attenuated in mid-to-late adulthood. In summary, our study revealed novel clusters of adolescent structural neurodevelopment and suggested that genetically-predicted delayed neurodevelopment has limited long-term effects on mental well-being and socio-economic outcomes later in life. Our results could inform future research on policy interventions aimed at reducing the financial and emotional burden of mental illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...